News‎ > ‎


posted Oct 3, 2017, 5:52 AM by Stefano Varas   [ updated Oct 3, 2017, 5:52 AM ]

Symposium CL
Inorganic Materials Systems for Advanced Photonics

The fruitful exploitation of optical ceramics and glasses and related photonic structures and devices as crucial pivots for the development of several enabling technologies provides a large spectrum of functionalities that allow us to face successfully socio- economic challenges in many fields going from energy production and saving to efficient and clean industrial cycles, from environmental protection to fast efficient novel communication systems, from structural monitoring to quantum technologies and to healthcare applications.
This Symposium, that follows the several ones on similar subject held at previous CIMTEC conferences, is to provide latest insights on fabrication, characterization and exploitation of photonic structures based on ceramics (oxides, oxynitrides, fluorides, sulphides, chalcogenides, etc...) inorganic non-metallic glasses, glass- ceramics, and ceramic/metal and glass/metal combinations in the form of nanostructured, bulk and graded materials and coatings, fibres, thin films, superlattices and other small confined systems, nanomaterials, nanocomposites and functional nanoparticles.
Focus will be on theory, modelling and simulation of materials and processes, green and advanced fabrication protocols (self assembly, particle beams, light irradiation, micromachining, colloidal processing...) and up-to-date characterization of structure, non-linear optical properties, tunability, nanosize effects etc. of novel inorganic photonic materials systems for light generation, detection, and manipulation including e.g. luminescent and laser materials, smart optical fibres, active plasmonic heterostructures, novel confined nano-micro structures etc. covering the UHV-IR electromagnetic spectrum.
Contributions from Academia and industry on upgraded or novel application and prospective new approaches to photonic-based technologies are also firmly encouraged.